
eMart App Documentation

1. Introduction

Welcome to eMart, the all-in-one solution for your everyday needs. Our platform
seamlessly integrates multiple services into one convenient app, providing you with
everything from delicious meals to reliable transportation, all with the click of a button.
With eMart, convenience is just a tap away.

eMart is a comprehensive solution for multi-vendor delivery systems, created with
Flutter, Firebase, and the Laravel Framework, known for its expressive and elegant
syntax. This product includes three apps: Customer, Store, and Driver. This
documentation provides guidance for setting up the eMart website and applications. It's
recommended to use Laravel Homestead, a virtual machine that satisfies all system
requirements, as your local development environment. Ensure your server meets the
following requirements.

Key Features:

1.1 : Multi Vendor Items Delivery:

Craving your favorite dish? Explore a wide range of cuisines from local restaurants and
food vendors. Order in with ease and have your meal delivered straight to your doorstep.
With eMart's multivendor food delivery service, you're spoiled for choice.

1.2 : eCommerce Marketplace:

Experience non-stop shopping excitement with our extensive eCommerce marketplace.
Browse through a diverse selection of products from various vendors, ranging from
electronics and clothing to home goods and accessories. Find exactly what you need,
all in one place.

1.3 : Parcel Delivery:

Need to send a package? No problem. Our parcel delivery service connects you with
reliable couriers who can deliver your parcels safely and on time. Whether it's a small
envelope or a large package, we've got you covered.

1.4 : Taxi Booking:

Getting around town has never been easier. Book a taxi with just a few taps and enjoy
hassle-free transportation to your destination. Our network of drivers ensures prompt
service and comfortable rides wherever you need to go.

1.5 : Car Rental:

Planning a road trip? Rent a car through eMart and hit the road with confidence. Choose
from a variety of vehicles to suit your needs, whether it's a compact car for city driving
or an SUV for a family adventure. Our seamless booking process makes renting a car a
breeze.

1.6 : Admin Panel:

For vendors, our user-friendly admin panel provides all the tools you need to manage
your products, orders, and deliveries efficiently. Monitor sales, update inventory, and
communicate with customers—all from one centralized dashboard.

1.7 : Website Integration:

Our website complements our app, offering users another convenient way to access our
services. Whether you prefer browsing on your desktop or mobile device, our website
provides the same seamless experience as our app.

1.8 : Secure Payments:

Shop and pay with confidence thanks to our secure payment system. We support
various payment methods, including credit/debit cards, mobile wallets, and cash on
delivery, ensuring a smooth and secure transaction every time.

1.9 : Customer Support:

Have questions or need assistance? Our dedicated customer support team is here to
help. Whether it's tracking an order, resolving an issue, or providing general assistance,
we're just a message away.

1.10 : Promotions and Deals:

Take advantage of special promotions and deals offered by our vendors. From
discounts on food orders to exclusive offers on car rentals, there's always a way to save
with eMart.

Experience the Convenience of eMart Today:

Whether you're craving a meal, shopping for essentials, sending a package, booking a
ride, or renting a car, eMart has you covered. Download the app or visit our website to
discover the ultimate convenience of eMart. Welcome to a world where everything you
need is just a tap away. Welcome to eMart.

2. Setup Setting up Flutter involves several steps. Here's a basic
guide to get you started:
2.1. System Requirements:

Ensure your system meets the minimum requirements for Flutter

development. Flutter supports development on Windows, macOS, and

Linux. Make sure your system has the necessary hardware and software

requirements as specified by Flutter documentation.

2.2. Install Flutter SDK:

Download the Flutter SDK from the official Flutter website.

Extract the downloaded file to a location on your system. For example, on

macOS or Linux, you can extract it to /usr/local and on Windows to C:\.

Add the Flutter bin directory to your system PATH to run Flutter

commands from the command line. This step is important for executing

Flutter commands globally in your system.

2.3. Install Development Tools:

For Android: Install Android Studio and configure the Flutter plugin.

Android Studio provides the Android SDK, which Flutter uses to develop for

https://docs.flutter.dev/get-started/install

Android. Ensure you have the Android SDK and the necessary tools

installed through Android Studio.

For iOS: You need a macOS system with Xcode installed to develop and

deploy Flutter apps for iOS.

2.4. Set up Android Emulator or iOS Simulator:

For Android development, set up an Android Virtual Device (AVD) using

Android Studio's AVD Manager.

For iOS development, use the iOS Simulator provided by Xcode.

Run flutter doctor:

Open a terminal and run flutter doctor. This command checks your

system for any dependencies needed for Flutter development.

It will provide feedback on any missing or outdated components and

instructions on how to resolve them.

2.5. Install Flutter and Dart plugins for your preferred IDE:

If you're using VS Code, install the Flutter and Dart plugins to enhance your

development experience.

Android Studio also has built-in support for Flutter, but make sure to install

the Flutter plugin if it's not already installed.

2.6. Create your first Flutter project:

Use the flutter create command to create a new Flutter project.

Navigate to the project directory and explore the file structure. You'll find

the main Dart file (main.dart) in the lib directory, where you'll write your

Flutter code.

2.7. Run your Flutter app:

Connect a device or start an emulator/simulator.

Navigate to your Flutter project directory in the terminal and run flutter

run.

This will compile your Flutter app and launch it on the connected device or

emulator.

2.8. Start Developing:

Once your app is running, you can start developing your Flutter UI and

logic. Flutter's hot reload feature allows you to see your changes instantly

without restarting the app.

2.9. Learn and Explore:

Flutter has an extensive set of widgets and libraries. Explore the official

Flutter documentation and community resources to learn more about

Flutter development.

3. Changing the package name (also known as the bundle
identifier or application ID) in a Flutter project involves a few
steps. Here's how you can do it:

3.1. Change the Android package name:

Navigate to the android directory within your Flutter project.

Open the AndroidManifest.xml file located in the app/src/main directory.

Find the package attribute in the <manifest> tag and change its value to

your desired package name.

3.2. Change the iOS bundle identifier:

Navigate to the ios directory within your Flutter project.

Open the Runner.xcodeproj project file using Xcode.

In Xcode, select the Runner project from the project navigator.

Go to the Runner target's settings.

Under the General tab, find the Bundle Identifier field and change it to

your desired bundle identifier.

3.3. Update Flutter project configuration:

Open the pubspec.yaml file located in the root directory of your Flutter

project.

Update the name field with your new package name.

Update the android: package field under flutter: with your new

package name.

3.4. Update Android source code references:

Open the MainActivity.java file located in

android/app/src/main/java/com/your_old_package_name.

Replace occurrences of the old package name with the new package

name.

3.5. Update iOS source code references:

Open the AppDelegate.swift file located in ios/Runner.

Replace occurrences of the old bundle identifier with the new bundle

identifier.

3.6. Clean and rebuild the project:

After making the necessary changes, clean and rebuild the project.

In Android Studio, you can clean the project by selecting Build > Clean

Project.

In Xcode, you can clean the project by selecting Product > Clean Build

Folder.

3.7. Test your changes:

Run your Flutter app on both Android and iOS devices/emulators to ensure

that the changes have been applied successfully.

Verify that the app runs without any issues and that the new package

name/bundle identifier is reflected correctly.

4. To change the launcher icon (app icon) in a Flutter project, you
can follow these steps:
4.1. Prepare Your New Icons:

First, prepare the new launcher icon images in the required sizes. Android

and iOS have different size requirements. You typically need icons in

various sizes to support different screen densities.

​ Android:

For Android, you need to replace the existing launcher icon files

with your new ones. The launcher icons for Android are stored in

the mipmap folders inside the android/app/src/main/res directory.

Replace the existing icon files (ic_launcher.png) in the mipmap

folders with your new icon files. Make sure to maintain the same

file names and sizes.

You may need to replace icons in various drawable folders for

different screen densities (e.g., mipmap-hdpi, mipmap-mdpi,

mipmap-xhdpi, mipmap-xxhdpi, mipmap-xxxhdpi).

​ iOS:

For iOS, you need to replace the existing icon files with your new

ones. The icons for iOS are stored in the Assets.xcassets directory

in the ios/Runner directory.

Open your Flutter project in Xcode by navigating to the ios directory

and opening the .xcworkspace file with Xcode.

In Xcode, navigate to Runner > Assets.xcassets.

Replace the existing AppIcon with your new icon files. You'll

typically find different sizes labelled for various devices (e.g.,

iPhone, iPad).

4.2. Flutter Launcher Icon Package (Optional):

Alternatively, you can use the flutter_launcher_icons package to

automate the process of updating launcher icons. This package allows

you to define a single source image and generate the required icons for

both Android and iOS.

Install the flutter_launcher_icons package by adding it to your

pubspec.yaml file:

dev_dependencies:

flutter_launcher_icons: "^0.9.2"

Run the following command in your terminal to generate launcher icons

based on your configuration:

flutter pub get

flutter pub run flutter_launcher_icons:main

Follow the prompts to configure the package according to your project's

requirements.

4.3. Test Your Changes:

After replacing the icon files or running the flutter_launcher_icons

package, rebuild your Flutter project and run it on both Android and iOS

devices/emulators to ensure that the new launcher icon is displayed

correctly.

5. To change the app name in a Flutter project for Android, iOS,
and web platforms, you'll need to adjust settings in each
platform's configuration. Here's how you can do it:
5.1. For Android:

5.1.1. Open the android/app/src/main/AndroidManifest.xml file.

5.1.2. Locate the <application> tag.

5.1.3. Change the value of the android:label attribute to your desired

app name.

5.2. For iOS:

5.2.1. Open the ios/Runner/Info.plist file.

5.2.2. Locate the <key>CFBundleDisplayName</key> entry.

5.2.3. Change the value associated with <string> to your desired app

name.

5.3. For Web:

5.3.1. Open the web/index.html file.

5.3.2. Locate the <title> tag.

5.3.3. Change the text within the <title> tag to your desired app name.

5.4. Additionally:

In your Flutter project directory, open the pubspec.yaml file and ensure

that the name field is set to the desired app name. This is the name that

appears in the app store listings, on the device's home screen, etc.

After making these changes, rebuild your app for each platform to apply

the new app name.

5.5. Example:

Let's say you want to change the app name to "My New App":

5.5.1. Android:

<application

android:label="My New App"

...>

5.5.2. iOS:

<key>CFBundleDisplayName</key>

<string>My New App</string>

5.5.3. Web:

<title>My New App</title>

5.5.4. Pubspec.yaml:

name: my_new_app

6. To change the Google Maps API key in a Flutter app for both
Android and iOS, you need to update the respective
configuration files in each platform. Here are the steps:

6.1. For Android:

6.1.1. Navigate to your Flutter project's
android/app/src/main/AndroidManifest.xml file.

6.1.2. Inside the <application> element, locate the <meta-data> tag with
the name com.google.android.geo.API_KEY.

6.1.3. Replace the android:value attribute with your new Google Maps
API key.
<meta-data

android:name="com.google.android.geo.API_KEY"

android:value="YOUR_API_KEY_HERE"/>

6.2. For iOS:
6.2.1. Open your Flutter project in a text editor or IDE.
6.2.2. Navigate to the ios/Runner directory within your Flutter project.
6.2.3. Locate the AppDelegate.swift file.
6.2.4. In the didFinishLaunchingWithOptions method, set the Google

Maps API key.

import UIKit

import Flutter

import GoogleMaps // Import GoogleMaps framework

@UIApplicationMain

@objc class AppDelegate: FlutterAppDelegate {

override func application(

_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions:

[UIApplication.LaunchOptionsKey: Any]?

) -> Bool {

// Add your Google Maps API key here

GMSServices.provideAPIKey("YOUR_API_KEY_HERE")

// Rest of your code...

return super.application(application,

didFinishLaunchingWithOptions: launchOptions)

}

}

Replace "YOUR_API_KEY_HERE" with your actual Google Maps API key.

After updating the API key in the AppDelegate.swift file, rebuild your Flutter

app for iOS to apply the changes.

By following these steps, your Flutter app will use the new Google Maps API

key specifically for iOS. Make sure you've also updated the API key in the

Android configuration as described earlier if you want to apply changes to both

platforms.

7. Two Ways to set up a firebase with an application(Using
Firebase CLI (5.1) OR Manually(5.2)).
7.1. Setting up Firebase for a Flutter project using the Firebase CLI

involves several steps. Below is a detailed guide on how to do
it:
7.1.1. Install Firebase CLI:

First, you need to install the Firebase CLI if you haven't already. You

can install it via npm (Node Package Manager) by running the

following command in your terminal or command prompt:

npm install -g firebase-tools

7.1.2. Login to Firebase:

After installing the Firebase CLI, log in to your Firebase account by

running the following command:

firebase login

This will open a browser window prompting you to log in to your

Google account associated with Firebase.

7.1.3. Create a Firebase Project:

If you haven't already created a Firebase project, you can create one

using the Firebase CLI by running:

firebase projects:create

Follow the prompts to create a new project.

7.1.4. Initialize Firebase in Your Flutter Project:

Navigate to your Flutter project directory in the terminal.

Initialize Firebase in your project by running:

firebase init

This command will prompt you to select the Firebase features you

want to set up. Choose the Firebase services you intend to use,

such as Authentication, Firestore, etc.

7.1.5. Configure Firebase:

During the initialization process (firebase init), you'll be asked to

select the Firebase project you created or configured earlier.

Choose the appropriate project from the list.

7.1.6. Install Required Dependencies:

After selecting the Firebase features, Firebase CLI will generate the

necessary configuration files for your project.

Next, you need to install the required Firebase packages in your

Flutter project. You can do this by adding the dependencies to your

pubspec.yaml file:

dependencies:

firebase_core: latest_version

firebase_auth: latest_version # (if you need

Firebase Authentication)

cloud_firestore: latest_version # (if you need

Cloud Firestore)

Add other Firebase plugins as needed

Replace latest_version with the actual version numbers of the

Firebase plugins you want to use. You can find the latest versions

on pub.dev.

7.1.7. Initialize Firebase in Your Flutter App:

import 'package:firebase_core/firebase_core.dart';

void main() async {

WidgetsFlutterBinding.ensureInitialized();

await Firebase.initializeApp();

runApp(MyApp());

}

7.1.8. Using Firebase Services:

Now you can use Firebase services in your Flutter app. Import the

necessary Firebase packages and follow the respective

documentation for each service you want to use (e.g., Firebase

Authentication, Cloud Firestore).

7.1.9. Testing:

Run your Flutter app on a device or emulator to verify that Firebase

services are correctly integrated and working.

7.2. Configuring and setting up FlutterFire in your Flutter project
involves several steps. Here's a detailed guide on how to do it:
7.2.1. Create a Firebase Project:

Go to the Firebase Console: https://console.firebase.google.com/

Click on "Add Project" and follow the instructions to create a new

project.

Once your project is created, you'll be redirected to the project

dashboard.

7.2.2. Add an App to Your Firebase Project:

In the Firebase console, select your project.

Click on the "Add app" button (usually represented by an Android or

iOS icon).

Follow the setup instructions to register your app with Firebase.

https://console.firebase.google.com/

Download the google-services.json file for Android or

GoogleService-Info.plist file for iOS. These files contain your

Firebase project configuration details.

7.2.3. Flutter Project Setup:

Open your Flutter project in your preferred editor.

Navigate to the android/app directory for Android or ios/Runner

directory for iOS, and paste the google-services.json (for

Android) or GoogleService-Info.plist (for iOS) file that you

downloaded earlier.

7.2.4. Add Firebase SDK to Your Flutter Project:

Open your Flutter project's pubspec.yaml file.

Add the following dependencies:

dependencies:

flutter:

sdk: flutter

firebase_core: latest_version

firebase_auth: latest_version # (if you need

Firebase Authentication)

cloud_firestore: latest_version # (if you need

Cloud Firestore)

Add other Firebase plugins as needed

​ Replace latest_version with the latest version numbers of the

Firebase plugins you want to use. You can find the latest versions

on pub.dev.

7.2.5. Using Firebase Services:

You can now use Firebase services in your Flutter app. Import the

necessary Firebase packages and follow the respective

documentation for each service you want to use (e.g., Firebase

Authentication, Cloud Firestore).

7.2.6. Testing:

Run your Flutter app on a device or emulator to verify that Firebase

services are correctly integrated and working.

8. To generate SHA-1 and SHA-256 keys for your Flutter app and
add them to your Firebase project, you can follow these steps:
8.1. Using Keytool:

8.1.1. Navigate to your JDK's bin directory in the command line.
8.1.2. Execute the following command to generate the SHA-1 key:

keytool -list -v -keystore path-to-your-keystore-file

-alias your-alias-name

8.1.3. Replace path-to-your-keystore-file with the path to your keystore
file (usually debug.keystore for debug builds and a custom keystore
for release builds) and your-alias-name with the alias name used to
generate the keystore.

8.1.4. Similarly, execute the following command to generate the SHA-256
key:

keytool -list -v -keystore path-to-your-keystore-file

-alias your-alias-name -storetype PKCS12 -keyalg RSA

8.2. Using Gradle (Android Studio):
8.2.1. Open your Flutter project in Android Studio.

8.2.2. In the Android view, navigate to app -> Gradle Scripts ->
build.gradle (Module: app).

8.2.3. Add the following lines to the android block

android {

...

signingConfigs {

debug {

storeFile file('path-to-debug.keystore')

storePassword 'password'

keyAlias 'key-alias'

keyPassword 'password'

}

}

}

8.2.4. Replace path-to-debug.keystore, password, and key-alias with
your keystore file path, password, and key alias respectively.

8.2.5. Sync your project to apply changes.
8.2.6. Run the following Gradle task in the terminal to get the SHA-1 and

SHA-256 keys

./gradlew signingReport

8.3. Adding Keys to Firebase Console:
8.3.1. Go to the Firebase Console.
8.3.2. Select your project.
8.3.3. For Android:

8.3.3.1. Click on the Android icon to add an Android app.
8.3.3.2. Follow the setup instructions, including adding the

google-services.json file to your Flutter project's
android/app directory.

8.3.3.3. During setup, you'll be asked for your SHA-1 key. Paste the
SHA-1 key you generated earlier.

8.3.3.4. After setup is complete, you'll have the option to download
the google-services.json file again. Replace the existing
file in your project if needed.

8.3.4. For IOS:
8.3.4.1. Click on the iOS icon to add an iOS app.

https://console.firebase.google.com/

8.3.4.2. Follow the setup instructions, including downloading the
GoogleService-Info.plist file.

8.3.4.3. There's no need to add SHA-1 or SHA-256 keys for iOS.
8.3.4.4. Add the downloaded GoogleService-Info.plist file to your

Flutter project's ios/Runner directory.

9. FAQ:
9.1. What should I do if I get the error message "Missing project_info object" in my

Flutter project?

The error message you're encountering, "Missing project_info object," typically
arises in Flutter projects when there's a misconfiguration or missing
information related to Firebase services. Here's how you can troubleshoot and
potentially resolve this issue

Solution :
9.1.1. Check google-services.json: If you're using Firebase services in

your Flutter app, ensure that you have the google-services.json

file placed in the correct location within your Android project. This
file contains important configuration information for Firebase
services. It should be located in the android/app directory of your
Flutter project.

9.1.2. Verify Firebase Setup: Double-check that you've completed all the
necessary steps to set up Firebase for your Flutter project. This

includes adding your app to the Firebase project using the Firebase
Console, downloading and adding the google-services.json file
to your Android project, and configuring Firebase services in your
Flutter app's code (if applicable).

9.1.3. Update Google Services Plugin: Ensure that you're using the latest
version of the Google Services Gradle plugin in your Android
project. You can check the latest version on the Google Services
Gradle Plugin page and update the version number in your
android/build.gradle file accordingly.

9.1.4. Check Flutter and Firebase Versions Compatibility: Make sure that
you're using compatible versions of Flutter and Firebase.
Sometimes, using outdated versions of either can lead to
compatibility issues. Refer to the Firebase Flutter documentation
and ensure compatibility with your Flutter version.

9.1.5. Sync Gradle Files: After making any changes to your Android
project configuration, such as updating the google-services.json

file or modifying the Gradle build files, make sure to sync your
Gradle files in Android Studio. This can be done by clicking on the
"Sync Project with Gradle Files" button.

9.1.6. Rebuild the Project: After ensuring all configurations are correct, try
rebuilding your Flutter project. You can do this by running flutter

clean followed by flutter pub get and then rebuilding the project
(flutter run or flutter build).

9.1.7. Check for Error Logs: Look for more detailed error messages or
stack traces in the console output or build logs. These can provide
additional clues about the underlying issue causing the "Missing
project_info object" error.

Thank You
© 2022-2024 eMart. All Rights Reserved.

